Elijah’s notes (thanks bro): https://elijahsong.notion.site/Lecture-7-Functions-Part-2-b1908b2aae8a49a2b9971d4c61af6a65

Just as an overview of the main topics (in no way representative of all the notes):

Injections

Surjections

A Proof about Birds

$$ (\forall b.~(\text{Bird}(b)\to \text{CanFly}(b))) \to (\forall h.~(\text{Heron}(h) \to \text{CanFly}(h))) $$

Important Table

table.png

Connecting Function Types

Theorem: For any function $f:A \to A$, if $f$ is an involution, then $f$ is surjective.

In FOL: $(\forall x \in A.~f(f(x))=x) \to (\forall b \in A.~\exists a \in A.~f(a)=b).$